正文 第十九章.与内二实验室的对话
多元关联拟脑智能模型第一个任务完成了,拟脑模型可以快速准确的实现母子脑重构功能,在母子脑的计算过程中,所有硬件系统自动组合拟态交付。其间,因为多次母子脑重构计算及长时间的积累,产生了大量的资源浪费,这些现象在继续优化算法后,以及后期完善了系统维护功能,基本解决了问题。 安静带着林久浩团队进入第二个课题任务,在拟脑计算的过程中,最大化实现芯片化,把原有的程序计算转化为硬件的芯片计算,这样可以大大提高拟脑系统的计算速度。 按照陆教授的思路,制定了从拟脑层任务最开始进行芯片化,并梳理出完整思路及分步过程。 第一步工作,就是整理词元组对应关系及信息元分类关系。 鲁少校就是那个林久浩曾经关注过的秃头军官,是内二实验室的老大,安静把他请过来,一起讨论第一步工作。 会议室中,大家都落座了,安静最先发言,问鲁少校:“老鲁,你们感应层技术部分,现在进展到什么阶段了?”。 “我们在感应层突破了最复杂的视觉部分,你知道,色声香味触法,其中最难的是色,就是视觉部分,其次是触觉部分。”鲁少校回答。 “视觉是最复杂的,听说你们现在对视觉追踪器的突破已经领先世界水平。”安静先吹捧一下对方。 “对呀,我们就是利用多元关联拟脑技术的态计算方法,把视觉追踪器放大到几百公里。”鲁少校也不隐瞒。 “这么厉害,几十公里外的东西是不是非常小,肉眼早就看不见了。”林久浩有疑问。 “早就看不见了,我们可以先使用雷达红外等措施发现目标,然后通过视觉放大去追踪,但是,难的地方不是放大变焦,而是在继续跟踪的时候,对方向和区域跟踪预判。”鲁少校回答。 “是呀,只要有准确目标,利用变焦放大都可以看到,还可以看到远处的星系,关键是方向和区域的持续跟踪能力。”安静说道。 “其实,道理很简单,就是要缩小可能范围,用预设态预测方向和区域,多摄像头预设态跟踪,把可能的范围不断缩小,就可以看得更远,这个道理不知道你们明白吗?”鲁少校反问了一句。 “明白,如果再丢掉目标,就再用雷达和红外跟踪一下。”林久浩说道。 “对,复合使用。。。哦。对了,据说有人做出了一种纯粹使用视觉观察的技术,可以测定一定范围内的物体距离并跟踪。”鲁少校神秘地说道。 “这么厉害,什么技术?”林久浩问道。 “叫什么‘双限趋势估值拟合计算方法’,是给机器人用的。。。小林,还要麻烦你跟踪一下。”鲁少校说道。 “狙击手好像提到过这个名词。”林久浩想起来了,柳德米拉曾经提到过。 “好了,小林有消息就通报一下,不过,我们现在谈正事吧,你的感应器问题我们不关心,我们关心的是内容的生成。”安静想把对话引入正题。 “别,等等,我今天来不只是给你们部门提供支持的,我也是来请求支持的。”鲁少校把安静的话题又转了回来了。 “老鲁,怎么了?你那边需要我们什么支持?”安静一听是来求人的,兴趣也来了。 “两个问题,啊,嗯~,啊,先说哪个?”鲁少校还。。。 “嗯?”安静一皱眉头。 “好,好,好。”鲁少校一看安静皱眉头,马上老实了。赶快说问题:“第一个问题,具体的现场条件环境空间拟脑重构问题,安静,你知道我们这边全是实打实的面对具体场景的,说句大白话,眼球环境,就是眼睛看得见的条件环境空间,问题是,怎么重构这个环境空间的拟脑模型,这是第一个问题。”。 “老鲁,重构问题是我们部门的事情呀,母子脑算法就是重构模型,有完整的算法模型,大型拟脑模型面对具体条件环境空间需要重构,不只是信息元关联关系和象限性质需要重新确定,而且信息元的关联距离和跳数也会优化的。”安静回答。 “确实啊,是你们部门的事情,但是,我们部门也需要,你设想一个机器人进入具体的条件环境空间,该空间的所有物品与该机器人的核心信息元距离要改变的。”鲁少校说道。 “师姐,这个问题我们已经研究过了,而且有成型算法,包括信息元定性问题及关联捷径问题,是不是可以直接给内二实验室用。”林久浩提醒安静。 “是的,老鲁,我们这边有成型的拟脑重构算法,你可以拿去先试一下,我们两个部门多沟通,把这部分的拟脑重构算法落实。”安静回答。 “是呀,安静,你还不知道吧,上面。。。”鲁少校指了指房顶,然后继续说道:“要加快军用机器人研发的进度了。” “老鲁!”安静瞪了一眼,然后回答道:“所以,我们提前研发了现场条件环境空间拟脑重构算法,就是为了。。。”安静又看了一下,参加今天的会议几个人都不是外人,然后继续说道:“为了尽快拿出一套完整的拟人机器人算法模型。” “师姐,加快研发是不是因为有人已经。。。”林久浩想继续问。 “是的,地球那边已经开始试验拟人型全功能智能军用机器人了。”安静平时嘴也够严的,即使是可以公开的信息,如果不问也不说。 “哦,哦,好,不说了,这套算法拿过来,我们这边的测试环境更好,我要说下一个问题了,可以吗?”鲁少校继续说道。 “老鲁,你说。”安静回答。 “神经元网络分析现场图像的时候,在我们现有的注意力机制上,再增加一种【关注点整体定义机制】,需要你们拟脑部门在动态库模型方面多支持。”鲁少校说出了第二个问题。 “神经元网络对图像分析没有好的整体定义机制吗?几年前的算法中就已经能够对多帧时间序列图像做关注点分析了。”安静反问道。 “关于注意力跟踪及整体定义这方面的论文非常多,不过,我们都不满意,因为我们的系统是基于多元关联拟脑模型的,整体采用的是信息元定义,如果前期就能使用多元关联拟脑模型,那么被定义的信息元,就可以直接传导到拟脑思维层及输出到控制层,所以,我们就想在整体定义环节采用动态库模型技术。”鲁少校回答。 “师姐,只要鲁少校他们的技术能够对图像中的关注点连续跟踪,我们就可以采用动态库完成整体定义。”林久浩提醒安静。 “是吗?我们部门也涉及到感应层的技术研究了吗?”安静并不知道,林久浩对视觉方面的技术很有天赋,因为早期就傻傻的玩过艾久三号长眼睛游戏。 “是呀,注意力机制可以解决图像中关注点权重标注,保持关注点在连续的时间序列图像中的标注,我们可以建立多种向量分析方法,在注意力机制执行的过程中建立自淘汰机制,最终完成整体定义。”林久浩边说边跃跃欲试。 “小林,你既然有想法,就去讲解一下。”安静鼓励了林久浩一下。 林久浩自己走到白板位置,拿起笔在白板上画示意图,边画边解释。 “我们看,当出现一组时间序列图像时,前期的神经元网络处理功能,可以把图像中的关注点加权重,并保持在后续的每一帧图像中。”林久浩边说边画。 “对,这些功能我们的系统完全可以支持,而且已经全部转化成硬件芯片处理,速度很快的。”鲁少校也炫耀了一下自己的进度。 “老鲁,你们芯片化的进度够快的,是不是不需要我们的支持了?”安静不高兴了,因为自己部门的芯片化进度慢了。 “呦,呦,这是怎么讲的,你看,我们前段很多算法容易固定,所以就容易做成芯片,你们拟脑部门是最难的,是大脑,是指挥千军万马的,所以呀。。啊。。”鲁少校打着哈哈。 “所以,我们通过动态库模型,来帮助建立关注点整体定义及关注点自淘汰机制。”林久浩在上面敲小白板了。 “首先,我们把这张图像上的所有关注点定义为临时信息元,并建立关联关系。”林久浩继续解释道。 “小林,你们的动态库模型可以支持多少个临时信息元?我们的图像可以生产百位以上的关注点,动态库能不能支持?”鲁少校问道。 “鲁少校,我们现在说的动态库,不是高端的动态库,是机器人研究所研制出的低算力动态库,这样的芯片一个模板上就可以安装1024个,十个这样的模板也只有半个饭盒大小,而且功耗很低。”林久浩介绍着,这部分动态库芯片模组不是为了建立高级动态信息元的芯片模组,而是处理低端计算的,恰恰是这样的模组,在拟人机器人中大量应用 “哦,就像我们用的GPU,是不是?”鲁少校继续问。 “只能说很像,GPU是做神经元网络解算的,而我们的动态库模组,主要是支持临时的,简单计算过程的动态信息元,做计算使用的,我们继续吧。”林久浩回答,并继续讲解。 “够用吗?”安静问了一句,因为这种动态库模型芯片模组的研发,安静曾要求林久浩带领技术团队,给予了机器人研究所大力支持。 “够用,够用。”鲁少校赶紧回答。 “我们把关注点制定为动态信息元,每一个动态信息元采用一个动态信息元计算芯片计算,并将动态信息元建立向量关系,形成相对关联关系。”林久浩边画图边解释。 “大量的临时动态信息元都建立相对关系,这个连接关系太复杂了,如果是一百个动态信息元,那么连接关系就。。。。。。”鲁少校还在算。 “不用这样计算,因为自淘汰机制会设定距离阈值,大于距离阈值的关注点不建立连接,所以自淘汰机制先在图像中划定几个关注点区域,我们先假定这些区域的关注点是一个整体,并临时给一个定义名称。”林久浩说完,在白板上画了区域。 “然后呢?”鲁少校问道。 “然后,我们知道,如果一群关注点属于一个整体,那么,在后续的时间序列图像中,这些关注点会形成整体运动的规律,我们继续设定向量连接的阈值,如果属于整体的关注点,那么它们的向量距离不会超越阈值。”林久浩解释道。 “哦,如果不属于整体,那么后续的运动过程中,一些关注点向量距离就会超越阈值。”鲁少校理解着。 “是的,如果明显超越阈值的关注点,例如A点与D点之间的向量距离阈值为5,在运动中向量距离超越了5,那么这条连接就断裂了。”林久浩还是边画边解释。 “我们就把它淘汰出整体定义,对吗?”鲁少校问道。 “不一定,我们举例,A点与D点在一开始是有连接关系的,例如,人把手垂在腰间,与腰部的关注点形成向量连接,但是,高高抬起手臂,手与腰之间的连接,大概率会超越距离阈值,手与腰部的关注点连接关系断裂,然而,手与手肘到肩部的连接没有超越阈值,所以这条连接还在,自淘汰机制建议,所有连接断裂的关注点排除出整体定义。”林久浩继续解释。 “哦,如果一个人趴着然后站起来,很多点是不是就会发生脱离阈值的现象?或者一条狗蜷缩着,突然伸直,是不是也很麻烦。”鲁少校继续发问。 “这就是横向拉伸和纵向拉伸算法扩散问题,我们在动态库模型算法中,可以加入这方面的功能,继续跟踪这种横向拉伸和纵向拉伸的现象。”林久浩继续解释。 “小林,你考虑的问题很超前呀。”安静夸奖了一句。 “我听琪琪说的,机器人研究所一直希望能够通过多元关联拟脑模型,判断人物的行为特征,要想判断行为特征,就要先能够对人物整体定义。”林久浩回答。 “哦,你这个想法非常好,我们部门可以继续研究,利用动态库模型完成关注点整体定义。”鲁少校说道。 “这个算法就叫【关注点整体定义自淘汰算法】吧!”安静把算法的名字定了下来。 “不过,鲁少校,您们部门在使用这个算法理念的时候,能不能对定义对象的纵深建模同时研究一下?”林久浩继续加码。 “纵深建模?”鲁少校没明白。 “就是,当A点与B点是关联的,并且我们在多个时间序列图像中收集了最大关联向量距离为5,当这两个点重叠的时候,我们认为A点与B点形成了5的纵深,可以利用这个条件做立体建模的依据。”林久浩解释。 “是呀,老鲁,这个世界上绝大部分生物都具备对称性。”安静也补了一句话。 “哦,哦,明白了,太好了,解决大问题了。”鲁少校很快就明白了,本来立体建模就是内二实验室的研究内容之一,现在全连接在一起了。 鲁少校的问题解决了,大家休息一会儿,统一喝水,统一去卫生间,军人多了,行动也很统一,休息片刻,会议又继续。。。 “该轮到我们的问题了吧?”安静问道。 “对,你们不关心感应层前端的技术,你们关心的是从前端输入的多种信息源,如何转变为内容描述,对吧?”鲁少校先问了一句。 “这一点你们做的怎么样?我们现在要开始芯片化信息元编码搜索过程了。”安静说道。 “我可以告诉你的是,我们已经统一了内容规范,就是我们向你们拟脑层输送的是TAG组模型。”鲁少校。 “你们现在可以做到,把感应层的内容定义,转化成内容描述,然后直接提起关键字,以关键字形成TAG组关联模型,输出给我们的拟脑层,对吗?。”安静有点不信。 “对,其实有时候内容是可以跳过的,比如我们直接把视觉的东西用TAG定义,方形、梯形、三角型,多型组合,上下组成等,多角度多层次的感知。”鲁少校边比划着边说。 “还有颜色、大小、比例等,是不是?有没有初步判断?”安静知道鲁少校说的是CV视觉方面的,不是NLP自然语言方面的,而CV视觉方面是拟脑思维层与感知层相互对接技术的关键,反而是NLP自然语言处理部分,安静部门已经拥有了最先进的算法,不同规模的多层分级的训练模型。 “初步判断也是用多元关联技术做的,比如一辆汽车有多个特性,而且特性之间有关联关系,我们将关键字在这些关联模型中行走,找出最高命中率的信息元。”鲁少校慢慢解释着,从话中透露出也使用多元关联拟脑技术。 “这些对象的识别你们也是采用神经元理论,卷积算法完成的,怎么又涉及到我们拟脑思维层的技术了?”安静感兴趣的问道。 “对象感知基本上采用的是神经元理论,至于卷积算法,其实现在很多视觉处理部分已经脱离了卷积算法范畴,反而是关注点向量定义更有效。但是,神经元理论及动态特征分析也有不尽人意的地方,例如立体的物体不同的角度不同的成像,在卷积算法中会呈现不同的特征码组,容易被识别为不同的内容对象。”鲁少校解释着。 “这一点不是靠后期训练可以解决吗?不同的特征码组定义为同一个事物。”安静说的是,读一个立体实物多个角度产生的特征图像,统一定义为一个事物。 “不好,因为角度的偏差会产生大量不同的成像,不同的成像产生大量不同的特征码组,虽然多维度多层面可以减少特征码组,但是,还是不理想。”鲁少校对现有算法的效果不是很满意。 “那你们怎么办?而且还要尽量避免指向同一个事物的特征码组过多,怎么办?模糊计算吗?”安静问道。 “不是,我们对立体的事物,做轮廓抽离、纵横比分析、姿态还原等多种技术,将复杂的对象进行多维度多层次拆分定义,再使用卷积算法辅助,对了,我们将内容分离后的内容提取关键字,然后也用了多元关联拟脑模型做精确识别,跟你们那边做法差不多。”鲁少校现在说的是静态事物的分析,因为静态事物没有运动特征,只有在视角转变的时候才会产生相对的运动,所以很难通过运动特征识别,不过人工智能对静态事物的识别要求相对低于动态事物,如果识别不出来,可以先按照一个大盒子型物体计算。 “你说的感应层也会用到我们拟脑层的技术,就是先给我们输出一个模糊的事物定义,是吗?”安静继续问,因为这些问题将导致拟脑思维计算的准确性。 “是的。”鲁少校说完,突然转为严肃的说道:“西方一直有一种误区,他们太注重表象了,而忽略了本质,西方通过对表象的统计创造了很多伪概念,例如条件反射原理等,尤其是在神经元理论上,他们认为人对事物的辨识,是通过神经感应多层次多维度的碎片特征感知得出来了,实际上又机械教条了。”。 “不是吗?确实,我一直也对这一点有很多疑惑,而且以前就有一个前辈说过跟你一样的话,人类认知不只是神经反应,还至少需要一层脑思维。”安静说道。 “对的,跟你们拟脑层关系很大,人对事物的判断不只是神经皮层的感应,至少,我说的是至少经过了一层脑思维判断,有时候还需要多层思维判断。。。安静,你琢磨琢磨,是不是这个道理。”鲁少校说完,指了指自己的脑袋。 安静看到老鲁指了指秃顶,笑了一下,随即说道:“老鲁,你这么一说我就更确定了,所以在感应层就需要多元关联拟脑技术的支持,对每一个事物不但要多层次多角度的分析,而且还要把分析的要素关联起来,这样才能得出准确的结果,而关联就是脑思维的动作。”。 “对的,而且不只是对该事物的多层次多角度分析,如果要准确认定一个事物,还要通过多层脑思维判断,而且,还要把该事物的判定结果,放到多元关联拟脑模型中,与其关联的其他事物一起分析,而且是多层脑思维分析。”鲁少校继续阐述。 “多层脑思维,是不是通过脑思维定义事物,在我们的多元关联拟脑模型中,就是将事物的多种可能都进行一遍思维行走,看看有没有对应的可执行闭环?”安静问道。 “是的,例如某一个事物,有可能是A、B、C三种可能性,但是,前端无法确定是什么,就要拿到多元关联拟脑模型走一遍,看一下A、B、C哪一个是实际概念,能够形成可执行闭环的可用信息元,当然这个思维分辨行为,还要根据条件环境空间的情况,以及机器人自身任务等多种因素联合判断,所以,感应层到拟脑层可不是一次提交内容就完成的,还需要来回多次,才能够准确判断内容对象的。”鲁少校解释道。 “是呀,我们这边也是,也要参与到你们感应层的工作中,采用多元关联拟脑模型,对你们的分析观察对象做脑思维判断,对观察对象做进一步分析定位,所以说,我们互相向对方多走了一步,工作就更融洽了。”安静认同地说道。 “对呀,其实我们也可以用传统方法,就是神经元系统卷积算法识别观察对象,脱离大模型及训练的情况下,不但准确性太差,而且对复杂环境中事物的分辨也有问题,用了多元关联技术,尤其是信息元编码方式,命中率提高了不少。”鲁少校说话的时候,还看了一眼林久浩。 安静立刻意识到,这个老鲁可是出了名的挖墙角达人,赶紧问道:“如果你们用多元的模型,可以直接命中信息元,我们就不用做事了,是这个意思吗?”。 “哎~~,可不能这么说,我们这边是尽量精确定义,最终的定义过程必须由你们那边完成,你们的方法可以直接命中信息元,进入拟脑思维,更直接。”鲁少校感觉到安静又处于战斗状态了,马上把话圆回来。 【以下部分全部用类脑细胞信息元存储格式解释,即增加‘思维空间第零层语义空间嵌入数组坐标’,如果信息元编码通用,可以使类脑细胞信息元直接在LLM中计算,如果LLM不能形成通用信息元编码,那么可以增加一个LLM概念编码位置。】 会议继续着,安静接着说道:“你们通过多模态大语言模型,为我们提供精确的特征组,对应到内容,抽离关键字形成TAG组关联模型,我们再根据词元组,查找对应的信息元编码,只要能够得到信息元编码,那么拟脑思维就可以开始了。”。 “可以,我们现在的大语言模型不只是类似于TAG的Token标识,而且还可以利用多维嵌入模组,在不同维度的空间进行语义定义,可以把观察对象多维度多层次拆分特征码组,然后定义对象描述,抽离成关键字,把多关键字在多元关联拟脑模型中,形成TAG组模型,并把这个模型输出给你们这边,然后你们去定义或指向信息元,这种固定的流程和算法可以芯片化了。”鲁少校说道。 “对,基于词元的Token可以形成关联模型吗,输出给我们。”安静又问。 这时,林久浩插了一句话:“师姐,不需要输出,我们可以把大语言模型的Token,以及对内容定义的由嵌入向量组,直接对应到信息元的第二个地址上。” 安静也小声回了一句,“我知道,我们两个都需要,尤其是前期训练的时候,需要对方先输出给我们内容特征组。” “小声讨论什么呢?还背着我。”鲁少校笑眯眯地看着。 “哦,老鲁,我们继续吧。”安静转头说道。 “其实我们前端的大语言模型可以直接向多元关联拟脑模型发出公式化指令,这个层面不需要提供TAG类组,因为大语言模型可以识别信息元。”鲁少校又发出了惊人言论,这个言论正好于林久浩的一致了,鲁少校认为前端可以识别信息元,就能够发起思维行走,而林久浩的意见是,将前端大语言模型定义的向量数组,直接写在信息元编码地址位置,那么信息元与语义就对应上了,但是。。。 “确实是可以,你们大语言模型能够准确地了解语义,然后通过对语义的了解,对应到信息元上,直接发出公式化指令,但是,我们多元关联拟脑模型这边不只是执行呀,还需要在信息变动的过程中,定义信息元、修改信息元及查询信息元,所以,还是需要的。”安静说清楚了,这个训练的过程,必须先提交特征组,才能形成信息元与语义的对应,而且这个过程是需要不断训练,不断优化的,其中还涉及到内容固化与信息元固化的问题。 “确实啊,其实我们都多向对方走一步,两边的系统结合就更紧密了。”鲁少校也明白了,安静部门为什么强调需要特征组对应到信息元的过程内容。 “然后,你提供的特征码组模型,就会产生多个特征码循环输出及关联模型匹配的情况,这样可以更准确的命中信息元集合。”安静接着说道。 “你们那边在特征码定义上要注意分类等级,不是所有的特征码都是平等的关系。”鲁少校也提出要求。 “这一点已经考虑过了,特征码不但有等级,例如医疗、军事、人群等有些词本来就是大合集,同时我们还考虑的其他分类,例如,方位特征码、数量词特征码。而且这些基本的特征码直接采用基础信息元编码,可以直接进入多元关联拟脑模型计算。”安静接着说道。 “对,这些带有特殊含义的特征码,在处理芯片中的标识应该能区别出来,避免了信息字段无法直接计算的缺点。”鲁少校称赞了一下编码方式。 安静接着说道:“这就是我师父陆教授的想法,以前叫计算机,是做数值计算处理的,以后叫人工智能,要做信息思维处理。”。 大家又休息了一会儿,看看时间,再看看会议内容,该结束了。。。 鲁少校最后发出了三联问:“我们的工作界限定好了吧?我没事了吧?我可以走了吧?”。 “可以了,谢谢你老鲁,这智慧的脑袋不长草的。”安静开了个玩笑。 “你,安静,你‘过桥拆河’,拿别人的缺陷开玩笑不好。”鲁少校摸了摸自己的脑袋,出门回自己实验室了。 “师姐,这个鲁少校果然很厉害呀。”林久浩惊叹道。 “什么厉害,头秃的厉害?”安静继续开玩笑。 “不是,他几句话就说明白了,给我们提供关键字组成的特征码组关联模型,我们利用特征码组关联模型,再利用我们自己训练的NLP语义处理,找到对应的信息元编码。”林久浩兴奋地说道。 安静也点了点头,表示赞同,然后说道:“我也没想到,这老鲁进展这么快,看来我们要加倍努力了。”。 “师姐,如果他们的特征码组提供的不够全面,我们是不是就无法命中信息元编码了?”林久浩又提出了一个关键问题。 “集合类命中,分步命中,循环命中,类似RNN算法,这是你父亲早期做的多元关联拟脑就解决的问题呀,你忘了吗?”安静反问。 “哦,想起来了,如果看到一架飞机,无法准确知道型号,那么就命中它的上一个大类,飞行器。”林久浩比喻着。 “对呀,看到人,认不出是谁,至少知道是个人吧,可以命中【人】这个信息元吧,然后继续逐步精确命中,后续还会有特征码标签补充进这个组,进行精确计算。”安静继续解释道。 “是呀,这就需要我们对特征码组再做标识,鲁少校那边的特征码补充要带组标识,否则,我们这边就会认为是新的事物的特征码,会去搜索新的信息元编码。”林久浩说道。 安静指了一下电脑,说道:“对,你把自己的想法,全部记录下来,要考虑的问题还很多,做流程设计的时候不能缺少。”。 “全记录下来了。”林久浩回答。 “还有,你前面说的,机器人研究所需要人物行为特征分析,这部分工作也很重要,我们必须与机器人研究所搞好关系,所以。。。”安静言下之意就是帮忙拉关系。 “师姐,我知道,搞好关系,他们给我们提供方便,我们就更有战斗力,不过,人手太少了。”林久浩有顾虑。 “人的事情我解决,你在完成其他研究工作的同时,继续思考行为特征分析问题,我去摇人,要不到固定的,还要不到临时借调的嘛!”安静说完就起身走了。 这边留下林久浩傻乎乎的站着,“临时借调的?能不能。。。唉!” 下一章节===《第二十章.多元关联拟脑技术芯片化》