468章 次日。 第一届国际几何研讨会在瑞典数学学会总部召开。 到场数学家412位,其中菲奖得主三位,维布伦奖得主八位。 程诺作为本届会议的邀请报告人,被安排在了第三位出场。 在他前面两位上台进行学术报告的一位是菲尔兹奖得主,另一位是曾获得过维布伦奖的老牌数学家。 由于与会的人数并不算太多,而且被邀请来的都是几何领域的数学家,因此就没有安排什么分会场。 所有的学术报告,都是在同一间大礼堂内进行。 每位邀请报告人,有五十分钟的时间进行报告讲述。 会议总共进行四天的时间。 其中前两天是学术报告,后两天则是讨论形式的学术交流。 没有过多的赘述,现任瑞典数学学会会长在做简单的致辞之后,便进行第一场学术报告。 程诺则是掏出笔记本,一边听一边用笔记录着。 学无止境。 单是几何这一个领域,程诺都不敢说领悟了其中的十之七八。 免费听菲奖大佬讲课,这种机会程诺还是会格外珍惜。 ………… 每场报告之间会有短暂的休息时间。 在第二场讲座结束后,程诺就被工作人员带到礼堂的后台。 说实话,程诺还真的是第一次在如此重大的场合进行学术报告,什么规矩都不懂,只能木偶般的被工作人员牵引着。 检查了一遍报告用的PPT,简单的画了个淡妆,在工组人员问清程诺没有别的需求后,便把程诺带到舞台一侧的入口处。 外面,那位暂时担任着主持人角色的一位瑞典数学学会副会长还在报幕。 “下面一位进行学术报告的是来自麻省理工学院的程诺教授,说起这位,各位肯定都认识,但照例,我还是要给各位介绍一番他的成就。” “程诺定理、程氏复环猜想的提出者,雅克比猜想、谷山志村猜想,程氏复环猜想三大猜想的证明者!同时,还是最年轻的维布伦奖获得者!” “下面,我们便请出有着‘数学鬼才’之称程诺先生,为我们进行学术报告。看看他这次,又能给我们带来怎样的惊喜!” 啪啪啪~~! 礼堂下面掌声齐鸣。 入口处,程诺深吸一口气,平复了内心紧张的心情,拿着话筒,步伐沉稳的走到台上。 四百多人,一眼望去,全是密密麻麻的人头。 这可是四百多位数学家,而不是四百多颗大白菜。 那一双双睿智而又透彻的眼眸扫视下,程诺有一种如芒在背的感觉。 心态还需要再练练啊! 程诺心中苦笑一下,急忙把目光撇开,注意力回到自己即将要讲述的学术内容上来。 投影仪将程诺报告的题目投影到幕布上。 《双有理几何的中的极小模型纲领问题》 看到这个题目,下面不少数学家都惊讶起来。 在场的四百多位数学家中,得到程诺不准备讲述之前两大猜想的证明过程的,只有极少数。 而在那极少数人中,知道程诺今天演讲主题是极小模型纲领的,只有菲涅尔教授一人而已。 所以,下面的众人先是诧异,然后眼神变得玩味起来。 说实话,这一出,他们都没有想到。 但是,他们并不看好程诺。 准确的说,双有理几何属于代数几何的一个分支,但是比较偏冷门的那种。 而极小模型纲领,更是双有理几何中的几个冷门方向之一。 冷门中的冷门。 用这个来描述极小模型纲领在几何界的地位丝毫不为过。 而且,极小模型纲领这个东西不仅冷门,还非常的复杂。 自从极小模型纲领这个概念在上世纪八十年代被提出以来,在它面前就横亘这两座大山: 极小模型纲领第一问题,还有极小模型纲领第二问题。 不把这两座大山移走,极小模型纲领研究最方便的那条直行道就被完全堵死,想要研究,只能绕远路,而且是好大一圈。 这就让不少人望而却步。 上世纪的时候,前来移山的数学家还络绎不绝,但发现连大山的一角都难以撬动,进入千禧年以后,便成为无人问津之地。 程诺今天选极小模型刚来作为讲述的主题,在他们看来,无非是通过绕过一圈复杂的公式定理什么的来研究。 除非…… 不可能! 他们心中直接否决了那种不切实际的猜测。 这么短的时间! 一瞬间,他们想到程诺那妖孽般的经历,心中那肯定的想法变得动摇起来。 要那个人是程诺的话,或许,大概,也许,会有那个可能。 台上,程诺清了清嗓子,响亮的声音传遍整个会堂,“对一个给定的代数簇,我们必能对其进行推广的blodon操作或flip操作,在有限次操作后,我们能得到一个几何上的‘极小模型’,这,就是极小模型纲领的定义。” “而我们都知道,极小模型纲领领域存在两个重要问题。”程诺竖起一根手指,“极小模型纲领第一问题,是问这种flip操作的存在性。” 程诺竖起第二根手指,“第二个问题,是指flip操作是否在有限次操作后停止。” “这两个问题,一直是被认为阻挡极小模型纲领继续研究脚步的两座大山。” “前端时间,我抽出来一段时间专门研究了一下,发现传闻果然有夸大的成分。”程诺笑了笑,“极小模型纲领的两大问题,并没有传闻中那么可怕。” 程诺这句话,让下面众人面色都是一僵。 听程诺这语气,这个家伙,真的不会是把极小模型纲领给解决了吧? 程诺没有理会下面众人的反应,调到下一页PPT,指着幕布上的投影说道,“我们来首先谈一下极小模型纲领第一问题。” “flip操作的存在性?这个问题,或许之前的人不好回答,但我可以在这里明确的告诉大家,这个操作是存在的。” “为什么?”程诺语速很快,“各位可以看一下这边的几列公式。” “我们首先给定配对(X,△),假设且存在正整数m,使m(K𝗑+△)是卡吉耶除子,那么,则称Kaanmata对数终极的,如果discrep=(X,△)>-1且[△]≤0。” “接下来……”